Zum Hauptinhalt springen

Selbstbeschreibende Zahlen

Testen Sie Ihre Knobelfähigkeiten in der Folge 132 des Zahlendrehers.

Diese Woche geht es in einer Aufgabe um selbstbeschreibende Zahlen. Die andere dreht sich um paarweise Abstände zwischen Punkten. Viel Spass beim Knobeln – und wir freuen uns auf Ihre Rückmeldungen.

Aufgabe 1: Paarweise Abstände

5 Punkte liegen auf einer Geraden. Alle paarweisen Abstände zwischen diesen Punkten in aufsteigender Reihenfolge sind 2, 4, 5, 7, 8, k, 13, 15, 17, 19. Bestimme k.

Aufgabe 2: Selbstbeschreibende Zahlen

Wie viele sechsstellige natürliche Zahlen gibt es, bei denen jede Ziffer so oft vorkommt, wie ihr Wert angibt? Beispiel: Die Zahl 133232 ist eine solche selbstbeschreibende Zahl.

Die Aufgaben liefern Ihnen Anna Beliakova, Universität Zürich, und Dmitrij Nikolenkov, Kantonsschule Trogen, unterstützt von NCCR Swiss MAP.

Die Folge von letzter Woche gibt es hier. Die Auflösung finden Sie kommenden Donnerstag in unserem Lösungsartikel. Wenn Sie Tipps für Ihre Miträtsler haben, teilen Sie sie gern unten. Sehen Sie aber bitte von der Auflösung ab.

Dieser Artikel wurde automatisch aus unserem alten Redaktionssystem auf unsere neue Website importiert. Falls Sie auf Darstellungsfehler stossen, bitten wir um Verständnis und einen Hinweis: community-feedback@tamedia.ch